Python Data Science Essentials: Become an Eefficient Data Science Practitioner By Understanding Python's Key Concepts (Record no. 114185)

MARC details
000 -LEADER
fixed length control field aam a22 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20190218100922.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 190212b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781786462138
040 ## - CATALOGING SOURCE
Transcribing agency
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005.133
Item number BOS
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Boschetti, Alberto
9 (RLIN) 35225
245 ## - TITLE STATEMENT
Title Python Data Science Essentials: Become an Eefficient Data Science Practitioner By Understanding Python's Key Concepts
250 ## - EDITION STATEMENT
Edition statement 2nd ed
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Name of publisher, distributor, etc. Packt Publishing Ltd.
Date of publication, distribution, etc. 2016
Place of publication, distribution, etc. Birmingham
300 ## - PHYSICAL DESCRIPTION
Extent 363p
500 ## - GENERAL NOTE
General note Part I. First steps<br/>1. Introducing data science and Python<br/>2. Installing Python<br/>3. Introducing Jupyter<br/>4. Datasets and code used in the book<br/><br/>Part II. Data munging<br/>5. Data Munging<br/>6. The data science process<br/>7. Data loading and preprocessing with pandas<br/>8. Working with categorical and text data<br/>9. Data processing with NumPy<br/>10. Creating NumPy arrays<br/>11. NumPy's fast operations and computations<br/><br/>Part III. The data pipeline<br/>12. The Data Pipeline<br/>13. Introducing EDA<br/>14. Building new features<br/>15. Dimensionality reduction<br/>16. The detection and treatment of outliers<br/>17. Validation metrics<br/>18. Testing and validating<br/>19. Cross-validation<br/>20. Hyperparameter optimization<br/>21. Feature selection<br/>22. Wrapping everything in a pipeline<br/>23. Machine Learning<br/><br/>Part IV. Machine learning<br/>24. Preparing tools and datasets<br/>25. Linear and logistic regression<br/>26. Naive Bayes<br/>27. K-Nearest Neighbors<br/>28. Nonlinear algorithms<br/>29. Ensemble strategies<br/>30. Dealing with big data<br/>31. Approaching deep learning<br/>32. A peek at Natural Language Processing (NLP)<br/>33. An overview of unsupervised learning<br/>34. Social Network Analysis<br/><br/>Part V. Social network analysis<br/>35. Introduction to graph theory<br/>36. Graph algorithms<br/>37. Graph loading, dumping, and sampling<br/>38. Visualization, Insights, and Results<br/><br/>Part VI. Visualization, Insights, and Results<br/>39. Introducing the basics of matplotlib<br/>40. Wrapping up matplotlib's commands<br/>41. Interactive visualizations with Bokeh<br/>42. Advanced data-learning representations
600 ## - SUBJECT ADDED ENTRY--PERSONAL NAME
Personal name Databases - Data Mining
9 (RLIN) 35226
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Massaron, Luca
9 (RLIN) 35227
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Book
Call number prefix 005.133
Call number suffix BOS

No items available.

© 2025 by NIMA Knowledge Centre, Ahmedabad.
Koha version 24.05