Information Theory, Inference and Learning Algorithms (Record no. 115960)

MARC details
000 -LEADER
fixed length control field nam a22 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 190411b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780521642989
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 003.54
Item number MAC
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name MacKay, David J. C.
9 (RLIN) 52113
245 ## - TITLE STATEMENT
Title Information Theory, Inference and Learning Algorithms
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Name of publisher, distributor, etc Cambridge University Press
Place of publication, distribution, etc UK
Date of publication, distribution, etc 2003
300 ## - PHYSICAL DESCRIPTION
Extent 628p
500 ## - GENERAL NOTE
General note Introduction to information theory<br/>Probability, entropy and inference<br/>More about inference<br/>Part - 1: Data Compression:<br/>The source coding theorem<br/>Symbol codes<br/>Stream codes<br/>Codes for integers<br/>Part - 2: Noisy-Channel Coding:<br/>Dependent random variables<br/>Communication over a noisy channel<br/>The noisy-channel coding theorem<br/>Error-correcting codes and real channels<br/>Part - 3: Further Topics in Information Theory:<br/>Hash codes<br/>Binary codes<br/>Very good linear codes exist<br/>Further exercises on information theory<br/>Message passing<br/>Constrained noiseless channels<br/>Crosswords and codebreaking<br/>Why have sex? Information acquisition and evolution<br/>Part - 4: Probabilities and Inference:<br/>An example inference task: clustering<br/>Exact inference by complete enumeration<br/>Maximum likelihood and clustering<br/>Useful probability distributions<br/>Exact marginalization<br/>Exact marginalization in trellises<br/>Exact marginalization in graphs<br/>Laplace's method<br/>Model comparison and Occam's razor<br/>Monte Carlo methods<br/>Efficient Monte Carlo methods<br/>Ising models<br/>Exact Monte Carlo sampling<br/>Variational methods<br/>Independent component analysis<br/>Random inference topics<br/>Decision theory<br/>Bayesian inference and sampling theory<br/>Part - 5: Neural Networks:<br/>Introduction to neural networks<br/>The single neuron as a classifier<br/>Capacity of a single neuron<br/>Learning as inference<br/>Hopfield networks<br/>Boltzmann machines<br/>Supervised learning in multilayer networks<br/>Gaussian processes<br/>Deconvolution<br/>Part - 6: Sparse Graph Codes<br/>Low-density parity-check codes<br/>Convolutional codes and turbo codes<br/>Repeat-accumulate codes<br/>Digital fountain codes<br/>Part - 7: Appendices: A. <br/>Some physics<br/>Some mathematics
600 ## - SUBJECT ADDED ENTRY--PERSONAL NAME
Personal name Computer Engineering
9 (RLIN) 37072
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Item type Book

No items available.

© 2025 by NIMA Knowledge Centre, Ahmedabad.
Koha version 24.05