Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play (Record no. 149039)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 02535nam a22002657a 4500 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | OSt |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20241016114243.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 241016b |||||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9789355429988 |
040 ## - CATALOGING SOURCE | |
Transcribing agency | |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Item number | FOS |
Classification number | 006.31 |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Foster, David |
9 (RLIN) | 121259 |
245 ## - TITLE STATEMENT | |
Title | Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play |
250 ## - EDITION STATEMENT | |
Edition statement | 2nd Ed |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Place of publication, distribution, etc. | Mumvai |
Name of publisher, distributor, etc. | Shroff Publishers & Distributors Pvt. Ltd. |
Date of publication, distribution, etc. | 2023 |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 426p |
500 ## - GENERAL NOTE | |
General note | I. Introduction to Generative Deep Learning<br/>1. Generative Modeling<br/>1. What Is Generative Modeling?<br/>2. Probabilistic Generative Models<br/>3. The Challenges of Generative Modeling<br/>4. Setting Up Your Environment<br/>5. Summary<br/>2. Deep Learning<br/>1. Structured and Unstructured Data<br/>2. Deep Neural Networks<br/>3. Your First Deep Neural Network<br/>4. Improving the Model<br/>3. Variational Autoencoders<br/>1. The Art Exhibition<br/>2. Autoencoders<br/>3. The Variational Art Exhibition<br/>4. Building a Variational Autoencoder<br/>5. Using VAEs to Generate Faces<br/>4. Generative Adversarial Networks<br/>1. Ganimals<br/>2. Introduction to GANs<br/>3. Your First GAN<br/>4. GAN Challenges<br/>5. Wasserstein GAN<br/>6. WGAN-GP<br/>7. Summary<br/>II. Teaching Machines to Paint, Write, Compose, and Play<br/>5. Paint<br/>1. Apples and Organges<br/>2. CycleGAN<br/>3. Your First CycleGAN<br/>4. Creating a CycleGAN to Paint Like Monet<br/>5. Neural Style Transfer<br/>6. Write<br/>1. The Literary Society for Troublesome Miscreants<br/>2. Long Short-Term Memory Networks<br/>3. Your First LSTM Network<br/>4. Generating New Text<br/>5. RNN Extensions<br/>6. Encoder–Decoder Models<br/>7. A Question and Answer Generator<br/>7. Compose<br/>1. Preliminaries<br/>2. Your First Music-Generating RNN<br/>3. The Musical Organ<br/>4. Your First MuseGAN<br/>5. The MuseGAN Generator<br/>6. The Critic<br/>7. Analysis of the MuseGAN<br/>8. Play<br/>1. Reinforcement Learning<br/>2. World Model Architecture<br/>3. Setup<br/>4. Training Process Overview<br/>5. Collecting Random Rollout Data<br/>6. Training the VAE<br/>7. Collecting Data to Train the RNN<br/>8. Training the MDN-RNN<br/>9. Training the Controller<br/>10. In-Dream Training<br/>9. The Future of Generative Modeling<br/>1. Five Years of Progress<br/>2. The Transformer<br/>3. Advances in Image Generation<br/>4. Applications of Generative Modeling |
600 ## - SUBJECT ADDED ENTRY--PERSONAL NAME | |
Personal name | Machine Learning |
9 (RLIN) | 121260 |
600 ## - SUBJECT ADDED ENTRY--PERSONAL NAME | |
Personal name | Generative Adversarial Networks |
9 (RLIN) | 121261 |
600 ## - SUBJECT ADDED ENTRY--PERSONAL NAME | |
Personal name | Encoder-decoder Models |
9 (RLIN) | 121262 |
600 ## - SUBJECT ADDED ENTRY--PERSONAL NAME | |
Personal name | CycleGAN |
9 (RLIN) | 121263 |
600 ## - SUBJECT ADDED ENTRY--PERSONAL NAME | |
Personal name | ProGAN |
9 (RLIN) | 121264 |
600 ## - SUBJECT ADDED ENTRY--PERSONAL NAME | |
Personal name | StyleGAN |
9 (RLIN) | 121265 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | Book |
Call number suffix | FOS |
Call number prefix | 006.31 |
Source of classification or shelving scheme | Dewey Decimal Classification |
No items available.