Hands-on Machine Learning with R
Material type:
- 9781138495685
- 006.31 BOE
Item type | Current library | Item location | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|---|
![]() |
NIMA Knowledge Centre | 7th Floor Silence Zone | Reference | 006.31 BOE (Browse shelf(Opens below)) | Not For Loan | M0043356 |
Browsing Institute of Management shelves, Collection: Reference Close shelf browser (Hides shelf browser)
I FUNDAMENTALS
1. Introduction to Machine Learning
2. Modeling Process
3. Feature & Target Engineering
II SUPERVISED LEARNING
4. Linear Regression
5. Logistic Regression
6. Regularized
7. Multivariate Adaptive Regression Splines
8. K-Nearest Neighbors
9 Decision Trees
10. Bagging
11. Random Forests
12. Gradient Boosting 1
13. Deep Learning 13.1 Prerequisites
14. Support Vector Machines
15. Stacked Models
16. Interpretable Machine Learning
III DIMENSION REDUCTION
17. Principal Components Analysis
18. Generalized Low Rank Models
19. Auto encoders
IV Clustering
20. K-means Clustering
21. Hierarchical Clustering
22. Model-based Clustering
There are no comments on this title.