Amazon cover image
Image from Amazon.com

Multi-Objective Optimization in Computational Intelligence: Theory and Practice

By: Contributor(s): Material type: TextTextPublication details: Hurshey USA Information Science Reference (IGI Global) 2008Description: 475pISBN:
  • 9781599044989
Subject(s): DDC classification:
  • 519.6 BUI
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Chapter 1: An Introduction to Multi-objective Optimization Lam Thu Bui, University of New South Wales, Australia Sameer Alam, University of New South Wales, Australia Chapter 2: Multi-objective particle swarm optimization approaches K.E. PARSOPOULOS, University of Patras, GR-26110 Patras, Greece M.N. VRAHATIS, University of Patras, GR-26110 Patras, Greece Chapter 3: Generalized Differential Evolution for Constrained Multi-objective Optimization Saku Kukkonen, Lappeenranta University of Technology, Finland Jouni Lampinen, Lappeenranta University of Technology, Finland Chapter 4: Towards a More Efficient Multi-Objective Particle Swarm Optimizer Luis V. Santana-Quintero, Evolutionary Computation Group (EVOCINV), Mexico Noel Ramírez-Santiago, Evolutionary Computation Group (EVOCINV), Mexico Carlos A. Coello Coello, Evolutionary Computation Group (EVOCINV), Mexico Chapter 5: Multi-objective Optimization Using Artificial Immune Systems Licheng JIAO, Xidian University, P.R.C. Maoguo GONG, Xidian University, P.R.C. Wenping MA, Xidian University, P.R.C. Ronghua SHANG, Xidian University, P.R.C. Chapter 6: Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem Seamus M. McGovern, U.S. DOT National Transportation Systems Center, USA Surendra M. Gupta, Northeastern University, USA Chapter 7: Evolutionary Population Dynamics and Multi-Objective Optimisation Problems Andrew Lewis, Griffith University, Australia Sanaz Mostaghim, University of Karlsruhe, Germany Marcus Randall, Bond University, Australia Chapter 8: Multi-objective evolutionary algorithms for sensor network design Ramesh Rajagopalan, Syracuse University, U.S.A Chilukuri K. Mohan, Syracuse University, U.S.A Kishan G. Mehrotra, Syracuse University, U.S.A Pramod K. Varshney, Syracuse University, U.S.A Chapter 9: Evolutionary Multi-objective Optimization for DNA Sequence Design Soo-Yong Shin, Seoul National University, Korea. In-Hee Lee, Seoul National University, Korea. Byoung-Tak Zhang, Seoul National University, Korea. Chapter 10: Computational Intelligence to Speed-Up Multi-Objective Design Space Exploration of Embedded Systems Giuseppe Ascia, Università degli Studi di Catania, Italy Vincenzo Catania, Università degli Studi di Catania, Italy Alessandro G. Di Nuovo, Università degli Studi di Catania, Italy Maurizio Palesi, Università degli Studi di Catania, Italy Davide Patti, Università degli Studi di Catania, Italy Chapter 11: Walking with EMO: Multi-Objective Robotics for Evolving Two, Four and Six-Legged Locomotion Jason Teo, Universiti Malaysia Sabah, Malaysia Lynnie D. Neri, Universiti Malaysia Sabah, Malaysia Minh H. Nguyen, University of New South Wales, Australia Hussein A. Abbass, University of New South Wales, Australia Chapter 12: Evolutionary multi-objective optimization in energy conversion systems: from component detail to system configuration Andrea Toffolo, University of Padova, Italy Chapter 13: Evolutionary Multiobjective Optimization for Assignment Problems Mark P. Kleeman, Air Force Institute of Technology, USA Gary B. Lamont, Air Force Institute of Technology, USA Chapter 14: Evolutionary Multiobjective Optimization in Military Applications Mark P. Kleeman, Air Force Institute of Technology, USA Gary B. Lamont, Air Force Institute of Technology, USA

There are no comments on this title.

to post a comment.
© 2025 by NIMA Knowledge Centre, Ahmedabad.
Koha version 24.05