TY - BOOK AU - Fox, John TI - Applied Regression Analysis and Generalized Linear Models SN - 9781452205663 U1 - 300.1​519536 PY - 2016/// CY - California PB - Sage Publications, Inc. KW - Regression Analysis KW - Linear Models (Statistics) KW - Social Sciences - Statistical Methods N1 - 1. Statistical Models and Social Science 2. What Is Regression Analysis? 3. Examining Data 4. Transforming Data 5. Linear Least-Squares Regression 6. Statistical Inference for Regression 7. Dummy-Variable Regression 8. Analysis of Variance 9. Statistical Theory for Linear Models* 10. The Vector Geometry of Linear Models* 11. Unusual and Influential Data 12. Diagnosing Non-Normality, Nonconstant Error Variance, and Nonlinearity 13. Collinearity and Its Purported Remedies 14. Logit and Probit Models for Categorical Response Variables 15. Generalized Linear Models 16. Time-Series Regression and Generalized Least Squares* 17. Nonlinear Regression 18. Nonparametric Regression 19. Robust Regression* 20. Missing Data in Regression Models 21. Bootstrapping Regression Models 22. Model Selection, Averaging, and Validation 23. Linear Mixed-Effects Models for Hierarchical and Longitudinal Data 24. Generalized Linear and Nonlinear Mixed-Effects Models ER -