TY - BOOK AU - Shmueli, Galit AU - Bruce, Peter C. AU - Yahav, Inbal AU - Patel, Nitin R. AU - Lichtendahl, Kenneth C. TI - Data Mining for Business Analytics: Concepts, Techniques and Applications in R SN - 9781118879368 U1 - 658.40380 PY - 2018/// CY - Hoboken PB - John Wiley & Sons, Inc. KW - Business mathematics - Computer programs N1 - Part I: Preliminaries 1. Introduction 2. Overview of the data mining process Part II: Data Exploration and Dimension Reduction 3. Data visualization 4. Dimension reduction Part III: Performance Evaluation 5. Evaluating predictive performance Part IV: Prediction and Classification Methods 6. Multiple linear regression 7. k-Nearest Neighbors (kNN) 8. The Naive Bayes classifier 9. Classification and regression trees 10. Logistic regression 11. Neural nets 12. Discriminant analysis 13. Combining methods : ensembles and uplift modeling Part V: Mining Relationships Among Records 14. Association rules and collaborative filtering 15. Cluster analysis Part VI: Forecasting Time Series 16. Handling time series 17. Regression-based forecasting 18. Smoothing methods Part VII: Data Analytics 19. Social network analytics 20. Text mining Part VIII: Cases 21. Cases ER -