000 | 01545nam a2200217 4500 | ||
---|---|---|---|
008 | 170328b xxu||||| |||| 00| 0 eng d | ||
020 | _a9781118877432 | ||
082 |
_a006.312 _bSHM |
||
100 |
_aShmueli, Galit _910753 |
||
245 | _aData Mining for Business Analytics: Concepts, Techniques and Applications with JMP Pro | ||
260 |
_bJohn Wiley & Sons, Inc. _c2017 _aNew Jersey |
||
300 | _a442p | ||
500 | _aPart I: Preliminaries 1. Introduction 2. Overview of the Data Mining Process Part II: Data Exploration and Dimension Reduction 3. Data Visualization 4. Dimension Reduction Part III: Performance Evaluation 5. Evaluating Predictive Performance Part IV: Prediction and Classification Methods 6. Multiple Linear Regression 7. k-Nearest Neighbors (k-NN) 8. The Naive Bayes Classifier 9. Classification and Regression Trees 10. Logistic Regression 11. Neural Nets 12. Discriminant Analysis 13. Combining Methods: Ensembles and Uplift Modeling Part V: Mining Relationships Among Records 14. Cluster Analysis Part VI: Forecasting Time Series 15. Handling Time Series 16. Regression-Based Forecasting 17. Smoothing Methods Part VII: Cases 18. Cases | ||
600 |
_aData Mining _921042 |
||
600 |
_aBusiness Mathematics - Computer Programs _921203 |
||
600 |
_aData Processing _921204 |
||
700 |
_aBruce, Peter C. _921044 |
||
700 |
_aStephens, Mia L. _921045 |
||
700 |
_aPatel, Nitin R. _921046 |
||
942 |
_2ddc _cLB _k006.312 _mSHM |
||
999 |
_c106533 _d106533 |