000 01545nam a2200217 4500
008 170328b xxu||||| |||| 00| 0 eng d
020 _a9781118877432
082 _a006.312
_bSHM
100 _aShmueli, Galit
_910753
245 _aData Mining for Business Analytics: Concepts, Techniques and Applications with JMP Pro
260 _bJohn Wiley & Sons, Inc.
_c2017
_aNew Jersey
300 _a442p
500 _aPart I: Preliminaries 1. Introduction 2. Overview of the Data Mining Process Part II: Data Exploration and Dimension Reduction 3. Data Visualization 4. Dimension Reduction Part III: Performance Evaluation 5. Evaluating Predictive Performance Part IV: Prediction and Classification Methods 6. Multiple Linear Regression 7. k-Nearest Neighbors (k-NN) 8. The Naive Bayes Classifier 9. Classification and Regression Trees 10. Logistic Regression 11. Neural Nets 12. Discriminant Analysis 13. Combining Methods: Ensembles and Uplift Modeling Part V: Mining Relationships Among Records 14. Cluster Analysis Part VI: Forecasting Time Series 15. Handling Time Series 16. Regression-Based Forecasting 17. Smoothing Methods Part VII: Cases 18. Cases
600 _aData Mining
_921042
600 _aBusiness Mathematics - Computer Programs
_921203
600 _aData Processing
_921204
700 _aBruce, Peter C.
_921044
700 _aStephens, Mia L.
_921045
700 _aPatel, Nitin R.
_921046
942 _2ddc
_cLB
_k006.312
_mSHM
999 _c106533
_d106533