000 01216nam a2200193 4500
003 OSt
005 20180403143435.0
008 171227b xxu||||| |||| 00| 0 eng d
020 _a9780520289291
040 _c
082 _a519.536
_bHOF
100 _aHoffmann, John P.
_923885
245 _aRegression Models for Categorical, Count and Related Variables: An Applied Approach
260 _bUniversity of California Press
_c2016
_aOakland
300 _a411p
500 _a1. Review of linear regression models 2. Categorical data and generalized linear models 3. Logistic and profit regression models 4. Ordered logistic and probit regression models 5. Multinomial logistic and probit regression models 6. Poisson and negative binomial regression models 7. Event history models 8. Regression models for longitudinal data 9. Multilevel regression models 10. Principal components and factor analysis 11. Appendix A : SAS, SPSS and R code for examples in chapters 12. Appendix B : using simulations to examine assumptions of OLS regression 13. Appendix C : working with missing data
600 _aRegression Analysis - Mathematical Models
_924216
942 _2ddc
_cLB
_k519.536
_mHOF
999 _c106534
_d106534