000 | 01216nam a2200193 4500 | ||
---|---|---|---|
003 | OSt | ||
005 | 20180403143435.0 | ||
008 | 171227b xxu||||| |||| 00| 0 eng d | ||
020 | _a9780520289291 | ||
040 | _c | ||
082 |
_a519.536 _bHOF |
||
100 |
_aHoffmann, John P. _923885 |
||
245 | _aRegression Models for Categorical, Count and Related Variables: An Applied Approach | ||
260 |
_bUniversity of California Press _c2016 _aOakland |
||
300 | _a411p | ||
500 | _a1. Review of linear regression models 2. Categorical data and generalized linear models 3. Logistic and profit regression models 4. Ordered logistic and probit regression models 5. Multinomial logistic and probit regression models 6. Poisson and negative binomial regression models 7. Event history models 8. Regression models for longitudinal data 9. Multilevel regression models 10. Principal components and factor analysis 11. Appendix A : SAS, SPSS and R code for examples in chapters 12. Appendix B : using simulations to examine assumptions of OLS regression 13. Appendix C : working with missing data | ||
600 |
_aRegression Analysis - Mathematical Models _924216 |
||
942 |
_2ddc _cLB _k519.536 _mHOF |
||
999 |
_c106534 _d106534 |