000 01802nam a2200169 4500
008 171213b xxu||||| |||| 00| 0 eng d
020 _a9780691168487
082 _a512.73
_bMAO
100 _aMaor, Eli
_923182
245 _aE: The Story of a Number
260 _bPrinceton University Press
_c2015
_aNew Jersey
300 _a227p
500 _a 1. John Napier, 1614 2. Recognition 3. Financial Matters 4. To the Limit, If It Exists 5. Forefathers of the Calculus 6. Prelude to Breakthrough 7. Squaring the Hyperbola 8. The Birth of a New Science 9. The Great Controversy 10. e[superscript x]: The Function That Equals its Own Derivative 11. e[superscript theta]: Spira Mirabilis 12. (e[superscript x] + e[superscript -x])/​2: The Hanging Chain 13. e[superscript ix]: "The Most Famous of All Formulas" 14. e[superscript x + iy]: The Imaginary Becomes Real 15. But What Kind of Number Is It? App. 1. Some Additional Remarks on Napier's Logarithms App. 2. The Existence of lim (1 + 1/​n)[superscript n] as n [approaches] [infinity] App. 3. A Heuristic Derivation of the Fundamental Theorem of Calculus App. 4. The Inverse Relation between lim (b[superscript h] - 1)/​h =​ 1 and lim (1 + h)[superscript 1/​h] =​ b as h [approaches] 0 App. 5. An Alternative Definition of the Logarithmic Function App. 6. Two Properties of the Logarithmic Spiral App. 7. Interpretation of the Parameter [phi] in the Hyperbolic Functions App. 8. e to One Hundred Decimal Places.
600 _aLogarithms - History
_924942
600 _aMathematics
_924943
942 _2ddc
_cLB
_k512.73
_mMAO
999 _c109015
_d109015