000 01622nam a2200181 4500
008 171005b xxu||||| |||| 00| 0 eng d
020 _a9781107149892
082 _a519.50285
_bEFR
100 _aEfron, Bradley
_920914
245 _aComputer Age Statistical Inference: Algorithms, Evidence and Data Science
260 _bCambridge University Press
_c2017
_aNew York
300 _a475p
500 _aPart I. Classic Statistical Inference 1. Algorithms and inference 2. Frequentist inference 3. Bayesian inference 4. Fisherian inference and maximum likelihood estimation 5. Parametric models and exponential families Part II. Early Computer-Age Methods 6. Empirical Bayes 7. James--Stein estimation and ridge regression 8. Generalized linear models and regression trees 9. Survival analysis and the EM algorithm 10. The jackknife and the bootstrap 11. Bootstrap confidence intervals 12. Cross-validation and Co estimates of prediction error 13. Objective Bayes inference and Markov chain Monte Carlo 14. Statistical inference and methodology in the postwar era Part III. Twenty-First Century Topics 15. Large-scale hypothesis testing and false discovery rates 16. Sparse modeling and the lasso 17. Random forests and boosting 18. Neural networks and deep learning 19. Support-vector machines and kernel methods 20. Inference after model selection 21. Empirical Bayes estimation strategies
600 _aBig Data - Statistical Methods
_925348
600 _aStatistics - History
_925349
700 _aHastie, Trevor
_923197
942 _2ddc
_cLB
_k519.50285
_mEFR
999 _c109428
_d109428