000 | 01622nam a2200181 4500 | ||
---|---|---|---|
008 | 171005b xxu||||| |||| 00| 0 eng d | ||
020 | _a9781107149892 | ||
082 |
_a519.50285 _bEFR |
||
100 |
_aEfron, Bradley _920914 |
||
245 | _aComputer Age Statistical Inference: Algorithms, Evidence and Data Science | ||
260 |
_bCambridge University Press _c2017 _aNew York |
||
300 | _a475p | ||
500 | _aPart I. Classic Statistical Inference 1. Algorithms and inference 2. Frequentist inference 3. Bayesian inference 4. Fisherian inference and maximum likelihood estimation 5. Parametric models and exponential families Part II. Early Computer-Age Methods 6. Empirical Bayes 7. James--Stein estimation and ridge regression 8. Generalized linear models and regression trees 9. Survival analysis and the EM algorithm 10. The jackknife and the bootstrap 11. Bootstrap confidence intervals 12. Cross-validation and Co estimates of prediction error 13. Objective Bayes inference and Markov chain Monte Carlo 14. Statistical inference and methodology in the postwar era Part III. Twenty-First Century Topics 15. Large-scale hypothesis testing and false discovery rates 16. Sparse modeling and the lasso 17. Random forests and boosting 18. Neural networks and deep learning 19. Support-vector machines and kernel methods 20. Inference after model selection 21. Empirical Bayes estimation strategies | ||
600 |
_aBig Data - Statistical Methods _925348 |
||
600 |
_aStatistics - History _925349 |
||
700 |
_aHastie, Trevor _923197 |
||
942 |
_2ddc _cLB _k519.50285 _mEFR |
||
999 |
_c109428 _d109428 |