000 00352nam a2200145 4500
999 _c111500
_d111500
003 OSt
005 20180720142316.0
008 180404b xxu||||| |||| 00| 0 eng d
020 _a9781119092940
040 _c
082 _a005.74
_bCAD
100 _aCady, Field
_926366
245 _aThe Data Science Handbook
260 _bJohn and Wiley Sons, Inc.
_c2017
_aHoboken
300 _a396p
500 _a1. Introduction: Becoming a Unicorn Part 1 The Stuff You'll Always Use 2. The Data Science Road Map 3. Programming Languages 4. Data Munging: String Manipulation, Regular Expressions, and Data Cleaning 5. Visualizations and Simple Metrics 6. Machine Learning Overview 7. Interlude: Feature Extraction Ideas 8. Machine Learning Classification 9. Technical Communication and Documentation Part II Stuff You Still Need to Know 10. Unsupervised Learning: Clustering and Dimensionality Reduction 11. Regression 12. Data Encodings and File Formats 13. Big Data 14. Databases 15. Software Engineering Best Practices 16. Natural Language Processing 17. Time Series Analysis 18. Probability 19. Statistics 20. Programming Language Concepts 21. Performance and Computer Memory Part III Specialized or Advanced Topics 22. Computer Memory and Data Structures 23. Maximum Likelihood Estimation and Optimization 24. Advanced Classifiers 25. Stochastic Modeling
600 _aStatistics - Data processing - Handbooks, manuals
_929801
942 _2ddc
_cLB
_k005.74
_mCAD