000 | 00352nam a2200145 4500 | ||
---|---|---|---|
999 |
_c111500 _d111500 |
||
003 | OSt | ||
005 | 20180720142316.0 | ||
008 | 180404b xxu||||| |||| 00| 0 eng d | ||
020 | _a9781119092940 | ||
040 | _c | ||
082 |
_a005.74 _bCAD |
||
100 |
_aCady, Field _926366 |
||
245 | _aThe Data Science Handbook | ||
260 |
_bJohn and Wiley Sons, Inc. _c2017 _aHoboken |
||
300 | _a396p | ||
500 | _a1. Introduction: Becoming a Unicorn Part 1 The Stuff You'll Always Use 2. The Data Science Road Map 3. Programming Languages 4. Data Munging: String Manipulation, Regular Expressions, and Data Cleaning 5. Visualizations and Simple Metrics 6. Machine Learning Overview 7. Interlude: Feature Extraction Ideas 8. Machine Learning Classification 9. Technical Communication and Documentation Part II Stuff You Still Need to Know 10. Unsupervised Learning: Clustering and Dimensionality Reduction 11. Regression 12. Data Encodings and File Formats 13. Big Data 14. Databases 15. Software Engineering Best Practices 16. Natural Language Processing 17. Time Series Analysis 18. Probability 19. Statistics 20. Programming Language Concepts 21. Performance and Computer Memory Part III Specialized or Advanced Topics 22. Computer Memory and Data Structures 23. Maximum Likelihood Estimation and Optimization 24. Advanced Classifiers 25. Stochastic Modeling | ||
600 |
_aStatistics - Data processing - Handbooks, manuals _929801 |
||
942 |
_2ddc _cLB _k005.74 _mCAD |