000 aam a22 4500
999 _c114185
_d114185
003 OSt
005 20190218100922.0
008 190212b ||||| |||| 00| 0 eng d
020 _a9781786462138
040 _c
082 _a005.133
_bBOS
100 _aBoschetti, Alberto
_935225
245 _aPython Data Science Essentials: Become an Eefficient Data Science Practitioner By Understanding Python's Key Concepts
250 _a2nd ed
260 _bPackt Publishing Ltd.
_c2016
_aBirmingham
300 _a363p
500 _aPart I. First steps 1. Introducing data science and Python 2. Installing Python 3. Introducing Jupyter 4. Datasets and code used in the book Part II. Data munging 5. Data Munging 6. The data science process 7. Data loading and preprocessing with pandas 8. Working with categorical and text data 9. Data processing with NumPy 10. Creating NumPy arrays 11. NumPy's fast operations and computations Part III. The data pipeline 12. The Data Pipeline 13. Introducing EDA 14. Building new features 15. Dimensionality reduction 16. The detection and treatment of outliers 17. Validation metrics 18. Testing and validating 19. Cross-validation 20. Hyperparameter optimization 21. Feature selection 22. Wrapping everything in a pipeline 23. Machine Learning Part IV. Machine learning 24. Preparing tools and datasets 25. Linear and logistic regression 26. Naive Bayes 27. K-Nearest Neighbors 28. Nonlinear algorithms 29. Ensemble strategies 30. Dealing with big data 31. Approaching deep learning 32. A peek at Natural Language Processing (NLP) 33. An overview of unsupervised learning 34. Social Network Analysis Part V. Social network analysis 35. Introduction to graph theory 36. Graph algorithms 37. Graph loading, dumping, and sampling 38. Visualization, Insights, and Results Part VI. Visualization, Insights, and Results 39. Introducing the basics of matplotlib 40. Wrapping up matplotlib's commands 41. Interactive visualizations with Bokeh 42. Advanced data-learning representations
600 _aDatabases - Data Mining
_935226
700 _aMassaron, Luca
_935227
942 _2ddc
_cLB
_k005.133
_mBOS