000 nam a22 4500
999 _c117564
_d117564
003 OSt
005 20200629124607.0
008 191009b ||||| |||| 00| 0 eng d
020 _a9781108441025
040 _c
050 _a516.3621
_bWOO
082 _a516.3621
_bWOO
100 _aWoodward, Lyndon
_943595
245 _aA First Course in Differential Geometry: Surfaces in Euclidean Space
260 _bCambridge University Press
_c2019
_aNew York
300 _a263p
500 _a1. Curves in Rn 2. Surfaces in Rn 3. Tangent planes and the first fundamental form 4. Smooth maps 5. Measuring how surfaces curve 6. The Theorema Egregium 7. Geodesic curvature and geodesics 8. The Gauss-Bonnet theorem 9. Minimal and CMC surfaces 10. Hints or answers to some exercise
700 _aBolton, John
_943596
942 _2ddc
_cLB
_k516.3621
_mWOO