000 | nam a22 4500 | ||
---|---|---|---|
999 |
_c117564 _d117564 |
||
003 | OSt | ||
005 | 20200629124607.0 | ||
008 | 191009b ||||| |||| 00| 0 eng d | ||
020 | _a9781108441025 | ||
040 | _c | ||
050 |
_a516.3621 _bWOO |
||
082 |
_a516.3621 _bWOO |
||
100 |
_aWoodward, Lyndon _943595 |
||
245 | _aA First Course in Differential Geometry: Surfaces in Euclidean Space | ||
260 |
_bCambridge University Press _c2019 _aNew York |
||
300 | _a263p | ||
500 | _a1. Curves in Rn 2. Surfaces in Rn 3. Tangent planes and the first fundamental form 4. Smooth maps 5. Measuring how surfaces curve 6. The Theorema Egregium 7. Geodesic curvature and geodesics 8. The Gauss-Bonnet theorem 9. Minimal and CMC surfaces 10. Hints or answers to some exercise | ||
700 |
_aBolton, John _943596 |
||
942 |
_2ddc _cLB _k516.3621 _mWOO |