000 nam a22 4500
999 _c119250
_d119250
003 OSt
005 20210326105533.0
008 191220b ||||| |||| 00| 0 eng d
020 _a9789351102670
040 _c
082 _a005.74
_bPRO
100 _aProvost, Foster
_946121
245 _aData Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking
260 _bShroff Publishers & Distributors Pvt. Ltd.
_c2013
_aSebastopol
300 _a384p
500 _a1. Introduction: Data-Analytic Thinking 2. Business Problems and Data Science Solutions 3. Introduction to Predictive Modeling: From Correlation to Supervised Segmentation 4. Fitting a Model to Data 5. Overfitting and Its Avoidance 6. Similarity, Neighbors, and Clusters 7. Decision Analytic Thinking I: What Is a Good Model? 8. Visualizing Model Performance 9. Evidence and Probabilities 10. Representing and Mining Text 11. Decision Analytic Thinking II: Toward Analytical Engineering 12. Other Data Science Tasks and Techniques 13. Data Science and Business Strategy 14. Conclusion
600 _aBig data - Information science
_946122
700 _aFawcett, Tom
_946123
942 _2ddc
_cLB
_k005.74
_mPRO