000 | nam a22 4500 | ||
---|---|---|---|
999 |
_c120779 _d120779 |
||
008 | 200625b ||||| |||| 00| 0 eng d | ||
020 | _a9781107011793 | ||
082 |
_a006.37 _bPRI |
||
100 |
_aPrince, Simon J. D. _957861 |
||
245 | _aComputer Vision: Models, Learning, and Inference | ||
260 |
_bCambridge University Press _aUSA _c2012 |
||
300 | _a580p | ||
500 | _aPart 1. Probability: 1. Introduction to probability 2. Common probability distributions 3. Fitting probability models 4. The normal distribution Part 2. Machine Learning for Machine Vision: 5. Learning and inference in vision 6. Modeling complex data densities 7. Regression models 8. Classification models Part 3. Connecting Local Models: 9. Graphical models 10. Models for chains and trees 11. Models for grids Part 4. Preprocessing: 12. Image preprocessing and feature extraction Part 5. Models for Geometry: 13. The pinhole camera 14. Models for transformations 15. Multiple cameras Part 6. Models for Vision: 16. Models for style and identity 17. Temporal models 18. Models for visual words Part 7. Appendices: A. Optimization B. Linear algebra C. Algorithms. | ||
600 |
_aElectronics and Communication _948726 |
||
942 |
_2ddc _cLB |