000 nam a22 4500
999 _c120779
_d120779
008 200625b ||||| |||| 00| 0 eng d
020 _a9781107011793
082 _a006.37
_bPRI
100 _aPrince, Simon J. D.
_957861
245 _aComputer Vision: Models, Learning, and Inference
260 _bCambridge University Press
_aUSA
_c2012
300 _a580p
500 _aPart 1. Probability: 1. Introduction to probability 2. Common probability distributions 3. Fitting probability models 4. The normal distribution Part 2. Machine Learning for Machine Vision: 5. Learning and inference in vision 6. Modeling complex data densities 7. Regression models 8. Classification models Part 3. Connecting Local Models: 9. Graphical models 10. Models for chains and trees 11. Models for grids Part 4. Preprocessing: 12. Image preprocessing and feature extraction Part 5. Models for Geometry: 13. The pinhole camera 14. Models for transformations 15. Multiple cameras Part 6. Models for Vision: 16. Models for style and identity 17. Temporal models 18. Models for visual words Part 7. Appendices: A. Optimization B. Linear algebra C. Algorithms.
600 _aElectronics and Communication
_948726
942 _2ddc
_cLB