000 | 01284aam a2200205 4500 | ||
---|---|---|---|
003 | OSt | ||
005 | 20230121124642.0 | ||
008 | 221123b |||||||| |||| 00| 0 eng d | ||
020 | _a9781138495685 | ||
040 | _c | ||
082 |
_a006.31 _bBOE |
||
100 |
_aBoehmke, Brad _963247 |
||
245 | _aHands-on Machine Learning with R | ||
260 |
_bCRC Press _c2020 _aBoca Raton |
||
300 | _a459p | ||
500 | _aI FUNDAMENTALS 1. Introduction to Machine Learning 2. Modeling Process 3. Feature & Target Engineering II SUPERVISED LEARNING 4. Linear Regression 5. Logistic Regression 6. Regularized 7. Multivariate Adaptive Regression Splines 8. K-Nearest Neighbors 9 Decision Trees 10. Bagging 11. Random Forests 12. Gradient Boosting 1 13. Deep Learning 13.1 Prerequisites 14. Support Vector Machines 15. Stacked Models 16. Interpretable Machine Learning III DIMENSION REDUCTION 17. Principal Components Analysis 18. Generalized Low Rank Models 19. Auto encoders IV Clustering 20. K-means Clustering 21. Hierarchical Clustering 22. Model-based Clustering | ||
600 |
_aMachine Learning - R (Computer Program Language) _964346 |
||
700 |
_aGreenwell, Brandon _964347 |
||
942 |
_2ddc _cLB _k006.31 _mBOE |
||
999 |
_c139315 _d139315 |