000 01284aam a2200205 4500
003 OSt
005 20230121124642.0
008 221123b |||||||| |||| 00| 0 eng d
020 _a9781138495685
040 _c
082 _a006.31
_bBOE
100 _aBoehmke, Brad
_963247
245 _aHands-on Machine Learning with R
260 _bCRC Press
_c2020
_aBoca Raton
300 _a459p
500 _aI FUNDAMENTALS 1. Introduction to Machine Learning 2. Modeling Process 3. Feature & Target Engineering II SUPERVISED LEARNING 4. Linear Regression 5. Logistic Regression 6. Regularized 7. Multivariate Adaptive Regression Splines 8. K-Nearest Neighbors 9 Decision Trees 10. Bagging 11. Random Forests 12. Gradient Boosting 1 13. Deep Learning 13.1 Prerequisites 14. Support Vector Machines 15. Stacked Models 16. Interpretable Machine Learning III DIMENSION REDUCTION 17. Principal Components Analysis 18. Generalized Low Rank Models 19. Auto encoders IV Clustering 20. K-means Clustering 21. Hierarchical Clustering 22. Model-based Clustering
600 _aMachine Learning - R (Computer Program Language)
_964346
700 _aGreenwell, Brandon
_964347
942 _2ddc
_cLB
_k006.31
_mBOE
999 _c139315
_d139315