000 01039nam a22001577a 4500
008 240329b |||||||| |||| 00| 0 eng d
020 _a9781718500723
082 _a006.31
_bGLA
100 _aGlassner, Andrew
_9106454
245 _aDeep Learning: A Visual Approach
260 _bNo Starch Press
_c2021
_aUSA
300 _a736p
504 _aPart I: Foundational Ideas An Overview of Machine Learning Essential Statistics Measuring Performance Bayes’ Rule Curves and Surfaces Information Theory Part II: Basic Machine Learning Classification Training and Testing Overfitting and Underfitting Data Preparation Classifiers Ensembles Part III: Deep Learning Basics Neural Networks Backpropagation Optimizers PART IV: Beyond the Basics Convolutional Neural Networks Convnets in Practice Autoencoders Recurrent Neural Networks Attention and Transformers Reinforcement Learning Generative Adversarial Networks Creative Applications
600 _aComputer Engineering
_9104391
942 _2ddc
_cLB
999 _c148442
_d148442