000 | 01039nam a22001577a 4500 | ||
---|---|---|---|
008 | 240329b |||||||| |||| 00| 0 eng d | ||
020 | _a9781718500723 | ||
082 |
_a006.31 _bGLA |
||
100 |
_aGlassner, Andrew _9106454 |
||
245 | _aDeep Learning: A Visual Approach | ||
260 |
_bNo Starch Press _c2021 _aUSA |
||
300 | _a736p | ||
504 | _aPart I: Foundational Ideas An Overview of Machine Learning Essential Statistics Measuring Performance Bayes’ Rule Curves and Surfaces Information Theory Part II: Basic Machine Learning Classification Training and Testing Overfitting and Underfitting Data Preparation Classifiers Ensembles Part III: Deep Learning Basics Neural Networks Backpropagation Optimizers PART IV: Beyond the Basics Convolutional Neural Networks Convnets in Practice Autoencoders Recurrent Neural Networks Attention and Transformers Reinforcement Learning Generative Adversarial Networks Creative Applications | ||
600 |
_aComputer Engineering _9104391 |
||
942 |
_2ddc _cLB |
||
999 |
_c148442 _d148442 |